Suzaku Observations of the Outskirts of A399/A401

Yutaka Fujita

N. Tawa, K. Hayashida (Osaka)

M. Takizawa (Yamagata), H. Matsumoto (Kyoto)

N. Okabe (Tohoku), T. H. Reiprich (Bonn)

Accepted for PASJ Suzaku special issue 2

Outline

- Metal Abundance of intracluster medium (ICM) in the outskirts of binary clusters, A399/A401.
 - Metal transfer from galaxies to the ICM
- Warm-hot intergalactic medium (WHIM)
 - Missing baryon around clusters
- Summary

Metal Transfer

- Metals in the ICM come from galaxies
- What transfers metals from galaxies to the surrounding ICM?
 - Ram-pressure stripping
 - Galactic winds
- Which is the main mechanism?

Ram-pressure stripping

- Galaxies in a cluster are moving in the ICM (~1000 km s⁻¹)
- Metal-enriched gas in the galaxies are stripped by the ram-pressure from the ICM
- Effective in the central region of a cluster
 - Large velocities of galaxies
 - Large density of the ICM
 - → Large ram-pressure

Quilis et al. (2000)

Galactic winds

- Winds from galaxies
 - Supernova explosions followed by starburst cause winds of metalenriched gas from a galaxy
- Effective in the outskirt of a cluster or in an immature cluster
 - External pressure from the ICM, which prevents the development of the winds, is small

Outskirts of clusters

- Metal abundance of the ICM in the outskirts of clusters tells us which mechanism is important for metal transfer from galaxies to the ICM
 - Ram-pressure stripping
 - Almost no metals in the outskirts
 - Galactic winds
 - There should be some amount of metals in the outskirts

A399/A401

- Binary clusters with a projection distance of ~3
 Mpc
 - Redshift
 - 0.0718 (A399)
 - 0.0737 (A401)
 - Temperature in their central regions
 - 7.23 keV (A399)
 - 8.47 keV (A401)
 (Sakelliou & Ponman 2004)
 - Massive clusters
 - In the early stage of a cluster merger

ROSAT X-ray image. Dashed lines are the virial radii. Blue square is the Suzaku field

Link region

- We observed the link region between the two clusters
- The region is brighter than that is expected from simple superposition of the two clusters
 - The clusters are interacting
 - Compressed filament gas?
 - Some of the gas was in a cosmological filament that had connected the two clusters
 - In spite of the distance from the cluster centers (τ1Mpc), the region is bright
 - Suitable to study the nature of the ICM in the outermost region of clusters

Surface brightness profiles along a 1-arcmin wide stripe that intersects the two cluster centers (Sakelliou & Ponman 2004)

Suzaku Observation

- Suzaku XIS
 - High sensitivity
 - Low background
- We observed a region where the virial radii of the two clusters (r = r_{vir}) cross each other
 - With Chandra and XMM-Newton, r < 0.5r_{vir} is the limit for the observation of metal abundance of the ICM

ROSAT X-ray image. Dashed lines are the virial radii. Blue square is the Suzaku field

XIS Image

- No prominent objects
 - No group of galaxies that could eject metals
 - For regions A and B, we analyzed the spectra

Spectrum

- Spectrum for region A
 - Summed spectrum of the three FI chips
 - Exposure time is150 ks
 - Fe K is clearly seen

Cross: observations

Red line: fitting results

Green line: ICM

Blue line: other components

(Galactic, CXB)

Results

Blue: temperature Red: abundance

- Temperature and metal abundance
- Abundance in this region (close to the virial radii) is not much different from that at tha cluster centers
 - \bullet Z ~ 0.2 Z_{\odot}

Cluster Merger

- Are A399/A401 clusters that have passed each other?
 - The ICM is mixed up and the metal abundance becomes uniform?
 - No!
- Simulations
 - At a collision, dark matter and galaxies can pass the other cluster because they are collision-less
 - The ICM cannot
 - The ICM is stripped from dark matter and galaxies
 - This not the case for A399/A401

Simulation of a cluster merger (gas distribution)

Poole et al. (2006)

Object that Eject Metals?

- Suzaku image
 - No objects that can eject large amount of metals
- Abundance is almost the same between region A and B
 - Abundance is uniform at least on a scale of ~1 Mpc
 - High Abundance is not a local phenomenon

What do we know from the high metal abundance

- Ram-pressure stripping (RPS) is not the main mechanism of metal transfer from galaxies to the ICM
 - RPS is not effective in the outskirts of a cluster
 - Condition of RPS

$$\rho_{\rm ICM} v_{\rm rel}^{2}$$

$$> 2\pi G \Sigma_{\star} \Sigma_{\rm H\,{\scriptscriptstyle I}}$$

$$= v_{\rm rot}^{2} R^{-1} \Sigma_{\rm H\,{\scriptscriptstyle I}}$$

$$= 2.1 \times 10^{-11} \rm dyn\,cm^{-2} \left(\frac{v_{\rm rot}}{220~\rm km\,s^{-1}}\right)^{2}$$

$$\times \left(\frac{R}{10~\rm kpc}\right)^{-1} \left(\frac{\Sigma_{\rm H\,{\scriptscriptstyle I}}}{8 \times 10^{20} m_{\rm H}~\rm cm^{-2}}\right)$$

 ρ_{ICM} : ICM

v_{rel}: galaxy velocity

v_{rot}: galaxy rotation velocityR: radius of a galaxy

 Σ_{HI} : column density of galaxy

gas

(Fujita & Nagashima 1999)

- In the outskirt region, the ICM density is ~ 3.4×10⁻⁴cm⁻³
 - λ RPS requires $v_{rel} > 2000$ km s⁻¹ and it is unlikely to happen in the region far from the cluster centers

Galactic winds?

- At least they did not happen recently (z~0) inside the clusters
 - Energy of a galactic wind: $E_{\rm w} \sim 10^{60} \, {\rm erg}$
 - The distance to which a wind can reach against the pressure from the surrounding ICM: d_w
 - $E_{\rm w} \sim (4 \, \pi/3) \, P \, d_{\rm w}^{-3}$
 - λ P: ICM pressure, P = n k T
 - λ For typical values of *n* and *T* inside a typical cluster

$$d_{\rm w} \sim 86 \left(\frac{n}{10^{-3}\,{\rm cm}^{-3}}\right)^{-1/3} \left(\frac{T}{8\,{\rm keV}}\right)^{-1/3} \left(\frac{E_{\rm w}}{10^{60}\,{\rm erg}}\right)^{1/3} \,{\rm kpc}$$

- λ Much smaller than the cluster size (~2 Mpc)
- It is difficult for galaxies concentrated at the cluster centers (< $0.5 r_{vir}$) at present to blow metals off to close to the virial radii

Theoretical Predictions

- Abundance distributions simulated with standard parameters for star formation
 - Steep abundance gradient

Tornatore et al. (2004)

Galactic Superwinds?

- Metals cannot reach the outskirts of a cluster through galactic winds after the cluster has grown up because the surrounding pressure is large
 - Winds must blow before the clusters grow (z ~
 - 2) and must be strong enough
 - Supernova explosions alone may not be enough?
 - λ Contribution of AGN activities?
 - λ So-called "superwinds"

Simulations for WHIM

Yoshikawa et al. (2001)

Fig. 2.— Simulated distribution of matter in the universe; Upper-left: dark matter, Upper-right: galaxies (cold baryon clumps below T^4K), Lower-left: hot intra-galactic medium $(T > 10^7K)$, and Lower-right: warm-hot intergalactic medium $(10^5K < T < 10^7K)$. The size of the plotted boxes corresponds to $30h^{-1}Mpc \times 30h^{-1}Mpc$ with the depth of $10h^{-1}Mpc$.

Observations of WHIM

- The region we observed was probably a cosmological filament that had connected the two clusters
 - WHIM may remain around the region
 - WHIM could be observed in the line of sight

Spectrum

- Spectrum obtained by XIS BI
 - At the redshift of the clusters,
 O VII line should be observed at E
 = 0.53 keV
 - No line is seen

Cross: observations

Red line: fitting results

Green line: ICM

Blue line: other components

(Galactic, CXB)

Upper limit of WHIM

• Assuming $T = 2 \times 10^6 \text{ K}$

$$n_{\rm H} = 9.2 \times 10^{-5} {\rm cm}^{-3} \left(\frac{I}{1 \times 10^{-7} {\rm ph \, cm}^{-2} {\rm s}^{-1}} \right)^{1/2} \left(\frac{Z}{0.1 \, Z_{\odot}} \right)^{-1/2} \left(\frac{L}{1 \, {\rm Mpc}} \right)^{-1/2}$$

- λ *I*: line intensity, *Z*: abundance, *L*: depth in the line of sight
- λ Observation
 - $\lambda l < 8.0 \times 10^{-8}$ photons cm⁻² arcmin⁻²
 - $n_{\rm H} < 4.1 \times 10^{-5} {\rm cm}^{-3}$ (for $Z = 0.2 Z_{\odot}$, $L = 2 {\rm Mpc}$)

Results

- For O VII line from WHIM
 - We obtained a strict upper limit

Takei et al. (2007)

Suzaku

Summary

- We observed the link region between A399 and A401 with Suzaku
 - The metal abundance of the ICM is not much different from that in their central regions ($Z \sim 0.2 Z_{\odot}$)
 - Ram-pressure stripping is not the main mechanism of metal transfer from galaxies to the ICM
 - Strong galactic winds (superwinds) might have blown at highredshift
 - The abundance may reflect that of gas in a cosmological filament
 - We could not detect WHIM in the link region
 - However, we obtained a strict upper limit